首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14850篇
  免费   1903篇
  国内免费   3642篇
  2024年   20篇
  2023年   570篇
  2022年   505篇
  2021年   813篇
  2020年   938篇
  2019年   1063篇
  2018年   860篇
  2017年   744篇
  2016年   816篇
  2015年   830篇
  2014年   1025篇
  2013年   1210篇
  2012年   830篇
  2011年   915篇
  2010年   714篇
  2009年   830篇
  2008年   836篇
  2007年   867篇
  2006年   716篇
  2005年   675篇
  2004年   537篇
  2003年   474篇
  2002年   390篇
  2001年   357篇
  2000年   322篇
  1999年   274篇
  1998年   250篇
  1997年   209篇
  1996年   184篇
  1995年   205篇
  1994年   152篇
  1993年   149篇
  1992年   130篇
  1991年   138篇
  1990年   109篇
  1989年   90篇
  1988年   69篇
  1987年   54篇
  1986年   60篇
  1985年   78篇
  1984年   72篇
  1983年   42篇
  1982年   95篇
  1981年   39篇
  1980年   36篇
  1979年   25篇
  1978年   20篇
  1977年   12篇
  1976年   11篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
《Developmental cell》2022,57(15):1883-1898.e5
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   
52.
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.  相似文献   
53.
54.
Primase is an essential component of the DNA replication machinery, responsible for synthesizing RNA primers that initiate leading and lagging strand DNA synthesis. Bacterial primase activity can be regulated by the starvation-inducible nucleotide (p)ppGpp. This regulation contributes to a timely inhibition of DNA replication upon amino acid starvation in the Gram-positive bacterium Bacillus subtilis. Here, we characterize the effect of (p)ppGpp on B. subtilis DnaG primase activity in vitro. Using a single-nucleotide resolution primase assay, we dissected the effect of ppGpp on the initiation, extension, and fidelity of B. subtilis primase. We found that ppGpp has a mild effect on initiation, but strongly inhibits primer extension and reduces primase processivity, promoting termination of primer extension. High (p)ppGpp concentration, together with low GTP concentration, additively inhibit primase activity. This explains the strong inhibition of replication elongation during starvation which induces high levels of (p)ppGpp and depletion of GTP in B. subtilis. Finally, we found that lowering GTP concentration results in mismatches in primer base pairing that allow priming readthrough, and that ppGpp reduces readthrough to protect priming fidelity. These results highlight the importance of (p)ppGpp in protecting replisome integrity and genome stability in fluctuating nucleotide concentrations upon onset of environmental stress.  相似文献   
55.
56.
《植物生态学报》2013,22(3):277
A scientific workflow system is designed specifically to organize, manage and execute a series of research steps, or a workflow, in a given runtime environment. The vision for scientific workflow systems is that the scientists around the world can collaborate on designing global-scaled experiments, sharing the data sets, experimental processes, and results on an easy-to-use platform. Each scientist can create and execute their own workflows and view results in real-time, and then subsequently share and reuse workflows among other scientists. Two case studies, using the Kepler system and BioVeL, are introduced in this paper. Ecological niche modeling process, which is a specialized form of scientific workflow system included in both Kepler system and BioVeL, was used to describe and discuss the features, developmental trends, and problems of scientific workflows.  相似文献   
57.
1. Many ectothermic species have evolved the ability to invoke a ‘behavioural fever’ when infected with a pathogen. The relative costs and benefits of this response, however, have rarely been quantified. 2. The aim of this study was investigate the nature and consequences of behavioural fever in the house fly, Musca domestica L., in response to infection with a possible biocontrol agent, the fungal entomopathogen, Beauveria bassiana (Balsamo) Vuillemin. 3. It was found that infected flies preferred higher temperatures and allocated more effort to thermoregulation than uninfected flies. Flies could not overcome infection but the altered thermal behaviour allowed infected flies to extend their survival and to lay more eggs relative to infected flies maintained under constant conditions. However, flies allowed to fever had lower egg viability suggesting a possible cost. 4. Under the present experimental conditions, the putative costs and benefits fever balanced one another resulting in no net change in fitness. Fever did not, therefore, limit the control potential of the fungus. We discuss whether the costs and benefits of behavioural fever might differ in other ecological contexts.  相似文献   
58.
59.
1. It is hypothesised that ecological restoration in grasslands can induce an alternative stable state shift in vegetation. The change in vegetation influences insect community assemblages and allows for greater functional redundancy in pollination and refuge for native insect species. 2. Insect community assemblages at eight coastal California grassland sites were evaluated. Half of these sites had undergone restoration through active revegetation of native grassland flora and half were non‐restored. Insects were collected from Lupinus bicolor (Fabaceae) within 2 × 2‐m2 plots in spring 2017. Lupinus bicolor is a common native species that is used in California restoration projects, and home and state landscaping projects. 3. Ordination demonstrated that insect community assemblages were different between restored and non‐restored sites. These differences were seen in insect functional groups as well as taxa‐specific differences and were found to be driven by environmental characteristics such as non‐native forb cover. 4. Functional redundancy of herbivores decreased at restored sites, while pollinators became more redundant compared with non‐restored sites. The assemblages of the common species found at restoration sites contained more native insects than those found at non‐restored sites, including species such as Bombus vosnesenskii. 5. Local grassland restoration has the potential to induce an alternative stable state change and affect insect community assemblages. Additionally, it was found that grassland restoration can be a potential conservation tool to provide refugia for bumblebees (Bombus), but additional studies are required to fully understand its broader applicability.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号